
LMC – Little Man Computer

Instruction Mnemonic Info

Load LDA xx Load the contents of memory address xx onto the accumulator.

Store STA xx Store the contents of the accumulator to memory address xx.

Add ADD xx Add the contents of memory address xx to the accumulator.

Subtract SUB xx Subtract the contents memory address xx from the accumulator.

Input INP Copy the value from the "in box" onto the accumulator.

Output OUT Copy the value from the accumulator to the "out box".

End HLT Stops executing the program.

Data storage DAT Reserve as data the memory address reached when this instruction is compiled with an identifier

e.g. num DAT. A value can be stored at the memory address by using DAT value

Branch always BRA xx Set the program counter to address xx. Basically, jump to another part of code.

Branch if zero BRZ xx If the accumulator is ZERO, set the program counter to address xx.

Branch if zero or

positive

BRP xx If the accumulator is ZERO or positive, set the program counter to address xx

Code example and explanation

1. INP

2. STA N1

3. LDA N1

4. ADD N1

5. STA RES

6. HLT

7. N1 DAT

8. RES DAT

Line 1 gets an input from the user. Line 2 stores that number in the memory location reserved for

the identifier ‘N1’. Line 3 loads whatever is in the memory location reserved for N1 back into the

accumulator. Line 4 adds whatever is in the accumulator with whatever is in the memory

location labelled N1 (in this case adding the number to itself – doubling it). Line 5 stores the

results, which are currently in the accumulator, in the memory location reserved for the

identifier ‘RES’. Line 6 end the program. Lines 7 and 8 are used to reserve memory locations

after the instructions to be used in the program. We can use the identifiers in the code instead

of the actual memory location number. When the code is compiled (after writing, before

execution), the identifiers are swapped for the actual memory locations so that the CPU can

find them.

